OVERVIEW OF DEGREE REQUIREMENTS
Minimum number of credits required to graduate: 120
Minimum Cumulative GPA required to graduate: 2.0.
Minimum Grade requirements for courses to count toward major: For the Molecular and Biomedical Sciences major, a “C or better” is required in “Introduction to Molecular and Cellular Biology” (BMB 280) to continue in the required, upper-level BMB courses.
Other GPA requirements to graduate: The Molecular and Biomedical Sciences major requires a minimum GPA of 2.0 for all required BMB courses and Program Electives.
Required Course(s) for fulfilling Capstone Experience: BMB 491
Contact Information: Melody Neely, Chair, Hitchner Hall Room 117, (207) 581-2810, melody.neely@maine.edu or Ed Bernard, Undergraduate Coordinator, Hitchner Hall, Room 284, (207) 581-2804, edward.bernard@maine.edu
The Molecular and Biomedical Sciences program is designed to provide the student with a broad background in the biological and physical sciences and an opportunity for in depth concentration in one of the most active disciplines in the biological sciences.
Departmental Requirements
Cumulative grade point average of 2.0 in the major and a minimum grade of C in BMB 280.
Hands-on Experience
An important aspect of the Molecular and Biomedical Sciences program is the requirement for hands-on experience in the laboratory. Laboratory courses are offered in fundamental aspects of molecular biology, cellular as well as biochemistry and microbiology. Laboratory courses in some of these topics are not generally available at smaller institutions without graduate and research programs or at many larger research universities where student numbers are too large to accommodate numerous laboratory courses in such specialized areas. At the University of Maine, however, we are large enough to have faculty with expertise in most sub disciplines but small enough in terms of students to be able to provide a wide variety of laboratory courses. We also take pride in the fact that all of our advanced laboratory courses are taught by professors, not by graduate students or part-time instructors. We believe strongly that such close interactions between students and faculty in small groups typical of most laboratory courses are important and mutually beneficial to the student and the faculty. Because the Department also offers M.S. and Ph.D. programs in the areas of biochemistry, microbiology, and molecular and cellular biology, we provide a variety of opportunities for undergraduate students to engage in independent study and research with individual faculty. In fact, we believe that this is one of the most important aspects of our undergraduate programs. In the required senior year research course, you will be part of a research team of faculty, postdoctoral research associates, technicians, and graduate and undergraduate students who are actively engaged in ongoing research projects that are both publicly and privately funded. Opportunities to earn academic credits while working off-campus in industry, hospitals, and research institutes also exist.
Facilities
The departmental facilities for teaching and research are located in Hitchner Hall. The building contains a modern facility for teaching and research in microbiology, including specialized equipment and laboratories for teaching molecular biology, virology, pathogenic microbiology, and animal cell culture. The University’s Automated DNA Sequencing Facility and the department’s Zebrafish Facility are located in Hitchner Hall. Close proximity to research laboratories enables students to participate in independent study and undergraduate research projects using state-of-the-art equipment and methods.
Career Opportunities
Rewarding career opportunities for molecular biologists are exceptionally numerous and varied. A career in Molecular Biology is not just a job, but an opportunity to explore new phenomena, participate at the frontiers of the most actively expanding areas of science today, and make significant contributions to human beings, our society and our world. These disciplines are at the core of the rapidly expanding fields of biotechnology and the allied health professions. Graduates of these programs work in: public health laboratories, medical, dental, veterinary, and university research laboratories; pharmaceutical, food, and chemical industries; environmental research and monitoring laboratories; colleges and universities; and a variety of existing as well as emerging genetic engineering and biotechnology industries.
Health Professions
Majoring in Molecular and Biomedical Sciences provides an ideal preparation for further study in medical, dental, veterinary and other health-related professional schools. Students interested in these careers should register with the Health Professions Office in their first year, which provides information and assistance in selecting proper supporting courses and the application process.
Molecular and Biomedical Sciences
Molecular and Biomedical Sciences has evolved in recent years as a response to the increased ability to study organisms at the molecular level. This discipline involves the systematic study of the molecular and structural basis for the organization, transmission and expression of genetic information, in addition to the general study of macromolecular systems involved in the structure and function of cellular components. Recent years have seen explosive advances in the study of DNA and molecular genetics including gene cloning, sequencing and mapping. Developments in recombinant DNA technology have opened up entirely new areas of study and provided powerful techniques that are revolutionizing the pharmaceutical, health and agricultural industries and have spawned new industries in biotechnology.